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ABSTRACT 
 

The most common method used to train neural networks is the minimisation of 
the misfit error for a training set of examples using gradient descent based 
techniques. In the statistical sense, we can view this as a process by which the 
parameters of the neural network (the weights) are estimated from a sample of 
data (the training set) using the method of Maximum Likelihood.  

However, as was discussed in Theoretical Reports IFS-TR-027 and IFS-TR-028, 
purely minimising the data misfit is not usually sufficient to ensure that the 
network is able to generalise well on unseen data. For this reason, regularisation 
constraints such as weight decay are usually added to the data misfit error during 
training to control the complexity of the mapping performed by the neural 
network. 

In this report, we demonstrate how such regularisation techniques can be shown 
to have a Bayesian interpretation. In particular, we show how the method of 
weight decay (IFS-TR-028) is consistent with the assumption of a Gaussian prior 
on the weights of the network and a Bayesian approach to training. We also 
show how a Bayesian interpretation of the weight estimation process leads to the 
possibility of assigning error bars to the predictions made by a neural network. 

We conclude this report with a discussion of some of the practicalities involved 
in the application of Bayesian approaches to neural network training and review 
the material contained in other Theoretical Reports that deal with such matters in 
more detail.          
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THE BAYESIAN APPROACH TO NEURAL NETWORKS 
We shall consider the use of Bayesian techniques and their application to neural network 

predictions in two contexts. Firstly we shall examine the Bayesian interpretation of the 
training process of the neural networks. We shall show how minimisation of the data misfit 
error is in fact a special case of the Bayesian Framework. 

Secondly, we shall examine the implication of the Bayesian model of neural network 
training with respect to the interpretation of the outputs of neural networks. In particular, we 
shall show how the Hessian of the error derivatives with respect to the weights may be used 
to assign uncertainties (error bars) on the predictions. We also show, how the Bayesian 
interpretation lends support to the idea of using committees of neural networks. 

 

Framework 

Consider the task of training a fixed neural network architecture, ℵ on a set of training 
examples 

{ }NitxD ii ...1,, == ρ
                                                        (1) 

where ixρ  is the thi training input vector, it is the target output and N is the number of 
training patterns. We have assumed, for simplicity, that the target outputs are scalar, but they 
could equally well be multi-dimensional. In what follows, extension to multi dimensional 
targets is trivial.  

In the standard method of training a neural network we try to find a set of weights ωρ , 
such that the network function ),( ωρρxf  minimises a least square error term DE  defined 
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If we assume that the target values it  are in fact generated by a process with additive 
Gaussian noise then the set of weights that minimises the above will correspond to the 
Maximum Likelihood estimate of the weights, MLωρ .  

In the Bayesian approach to network training, rather than finding a single best set of 
weights we attempt to find the probability distribution of the weights given the training data 
D , i.e. we wish to find  
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The denominator of the above is a weight independent normalisation factor and can be 
written in terms of the two densities contained in the numerator, 

( ) ( ) ( )∫= ϖωω ρρρ dpDpDp |                                               (4) 

So, in order to determine the density ( )Dp |ωρ , we need to obtain expressions for the 
densities ( )ωρp  and ( )ωρ|Dp . 

 

Evaluating ( )ωρ|Dp  

Let us assume that the target functions are generated by an unknown process with 
additive, zero mean Gaussian noise with a variance of 2

nσ . We can then define the 
probability of observing a particular target it  given an input vector ixρ  and particular set of 
network weights, ωρ  as  
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We can therefore write the likelihood of the entire data set (assuming that the training 
examples are independent) as 
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Substituting Equation (2) into the above and using the standard notational conveniences 
of writing  
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β = ,                                                          (7) 
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we can re-write the Equation (6)  as 
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Clearly, for the above the maximum for the likelihood is obtained for a minimum value of 
DE . Thus, standard neural network training techniques that minimise data misfit error, DE  

are equivalent to maximum likelihood estimation. 

 

 

Evaluating ( )ωρp  

This density represents a prior on the values of the weights in the network. It has been 
empirically shown by a number of researchers that the final weights of an unregularised, 
trained network tend to exhibit Gaussian distributions. Let us assume that the prior for the 
weights may be given by a zero-mean Gaussian with a standard deviation of 2

wσ . We can 
then write the density of the weights as  
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where W is the total number of weights contained in the neural network and iω is the 

value of the thi network weight. Using similar substitutions to those introduced above in the 
previous Section, 
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we can re-write this as  
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where we have defined the weight error, WE  as the sum of the squares of the weights, 
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 Combining the Densities 

Combining expressions for the two densities above we can now write the posterior 
distribution for the weights, 
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where ( )ωρM  is defined 

( ) WD EEM αβω +=ρ
                                               (16) 

Now that we have an expression for this posterior distribution, we can predict the target 
value, t  of a new input vector, xρ by using the integral 

( ) ( ) ( )∫= ωωω ρρρρ dDpDtpxtp |,||                                      (17) 

The problem with the above expression is that it implies that we evaluate the target for 
every possible set of weights, ωρ . Networks will usually contain 100 plus weights, so 
clearly, it is impractical to evaluate the above integral, as it would involve performing a 100 
plus dimensional integration!  

What is usually done instead is to assume that the quantity ( )Dp |ωρ  is sharply peaked 
about some maximum value, MAPωρ . We can therefore approximate the above integral by 
evaluating it only about the immediate vicinity of the maximum a posteriori (MAP) estimate. 
We will discuss how to perform this integration in the next Section. First of all we shall 
discuss methods for finding the maximum a posteriori weights, MAPωρ . 

 

Finding the MAP Weights      

From Equation (15) we see that in order to find the maximum a posteriori probability 
( )DP |ωρ  of the weights ωρ , we must minimise the function 

( ) WD EEM αβω +=ρ
                                             (18) 

with respect to the network weights, ωρ . Expanding the original terms of DE  and WE  we 
obtain 
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This function is familiar as the error function used to train neural networks with weight 
decay (IFS-TR-028). The weight decay parameter, λ  is in this case given by  

β
αλ =                                                                  (20) 

Thus, training a neural network using weight decay is, in fact, equivalent to attempting to 
find the MAP weights assuming a Gaussian prior on the weights and additive Gaussian noise 
on the target values. Furthermore, we are given an interpretation of the weight decay, λ as 
being the ratio of the expected variances of the noise on the targets of the training data and 
the prior of the weights.  

 

Using the MAP Estimate to Make Predictions and Estimate Error-
Bars  

Suppose we have trained a neural network to minimise the function ( )ωρM  as discussed 
above. At the end of training we hope to have found the maximum a posteriori set of weights 

MAPωρ . We now want to use this set of weights to provide predictions about a new input 
vector, xρ. Recall that, in order to do this we wish to evaluate the integral, 

( ) ( ) ( )∫= ωωω ρρρρρ dDpDxtpDxtp |,,|,|                             (21) 

One option would be to assume that the value of ( )Dp |ωρ  is 1.0 at the value MAPωω ρρ =  
and 0.0 for all other values of ωρ  (i.e. it is a delta function). We would therefore simply use 
the output of the final trained network as an approximation to the above integral. This 
approach corresponds to the usual non-Bayesian approach to training neural networks using 
simple weight decay. 

A more sophisticated approach is to assume that about some local neighbourhood of 
MAPωρ  we can make a quadratic approximation to the function ( )ωρM , i.e. 

( ) ( ) ( ) ( )MAP
T

MAPMAP HMM ωωωωωω ρρρρρρ −−+=
2
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                  (22) 

where H is the Hessian of the regularised error function with respect to the weights. This 
can be written in terms of the Hessian of the unregularised error function,  

IEH D αβ +∇∇=                                               (23) 

A number of techniques exist in the literature for the determination of the Hessian of the 
unregularised error function. For a summary, see IFS-TR-039. 
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Substituting the above expansion into Equation (21) and making a linear approximation 
for the output of the network about the MAP weights, i.e. 

( ) ( ) ωωωω ρρρρρρρ ∆+=∆+ T
MAPMAP gxfxf ,,                          (24) 

where gρis the standard error gradient evaluated about MAPωρ  
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we obtain the final expression for a prediction of the target , t  for a new input vector xρ , 
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i.e. the probability of the predicted output is a Gaussian with expected mean equal to the 
output of the network with the MAP weights and variance given by 
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So, in practical terms we use the network with the MAP weights to estimate the expected 
value of the target in the usual manner, but we can also associate with this estimate a measure 
of the uncertainty associated with this prediction.  

 

Finding Suitable Values for α and β  

So far, we have not discussed how to obtain suitable estimates for the so called hyper 
parameters α  and β . We examine two possible techniques for this in Theoretical Report 
IFS-TR-031. 

 

Summary 

In this report, the following has been shown 

• Training using the standard weight decay is consistent with training a neural network 
using Bayesian techniques with a Gaussian prior assumed for the distribution of the 
weights of the network. 

• The Bayesian analysis allows us to understand more precisely the role of the 
regularisation constant, λ in the weight decay algorithm. Specifically it allows us to 
view λ as representing the ratio of the expected variances of the target outputs and 
the weight priors. 
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• It is possible, through the consideration of the Hessian matrix to calculate error bars 
or uncertainties in the output responses of the neural networks. This is particularly 
valuable in the case of financial time series prediction as it allows us to estimate the 
volatility of the predicted time series.   
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